Mapping the signal-to-noise-ratios of cortical sources in magnetoencephalography and electroencephalography.
نویسندگان
چکیده
Although magnetoencephalography (MEG) and electroencephalography (EEG) have been available for decades, their relative merits are still debated. We examined regional differences in signal-to-noise-ratios (SNRs) of cortical sources in MEG and EEG. Data from four subjects were used to simulate focal and extended sources located on the cortical surface reconstructed from high-resolution magnetic resonance images. The SNR maps for MEG and EEG were found to be complementary. The SNR of deep sources was larger in EEG than in MEG, whereas the opposite was typically the case for superficial sources. Overall, the SNR maps were more uniform for EEG than for MEG. When using a noise model based on uniformly distributed random sources on the cortex, the SNR in MEG was found to be underestimated, compared with the maps obtained with noise estimated from actual recorded MEG and EEG data. With extended sources, the total area of cortex in which the SNR was higher in EEG than in MEG was larger than with focal sources. Clinically, SNR maps in a patient explained differential sensitivity of MEG and EEG in detecting epileptic activity. Our results emphasize the benefits of recording MEG and EEG simultaneously.
منابع مشابه
A Unique Approach of Noise Elimination from Electroencephalography Signals between Normal and Meditation State
In this paper, unique approach is presented for the electroencephalography (EEG) signals analysis. This is based on Eigen values distribution of a matrix which is called as scaled Hankel matrix. This gives us a way to find out the number of Eigen values essential for noise reduction and extraction of signal in singular spectrum analysis. This paper gives us an approach to classify the EEG signa...
متن کاملSource cancellation profiles of electroencephalography and magnetoencephalography
Recorded electric potentials and magnetic fields due to cortical electrical activity have spatial spread even if their underlying brain sources are focal. Consequently, as a result of source cancellation, loss in signal amplitude and reduction in the effective signal-to-noise ratio can be expected when distributed sources are active simultaneously. Here we investigate the cancellation effects o...
متن کاملA method for spatiotemporal mapping of event-related modulation of cortical rhythmic activity
Cortical rhythmic activity can be systematically modulated by stimuli or tasks and may thus provide relevant information about brain function. Meaningful use of those phenomena requires characterization of both locations and time courses of event-related suppressions and increases of oscillatory activity. However, localization of the neural sources of cortical rhythms during intervals of very l...
متن کاملAssessing and improving the spatial accuracy in MEG source localization by depth-weighted minimum-norm estimates.
Cerebral currents responsible for the extra-cranially recorded magnetoencephalography (MEG) data can be estimated by applying a suitable source model. A popular choice is the distributed minimum-norm estimate (MNE) which minimizes the l2-norm of the estimated current. Under the l2-norm constraint, the current estimate is related to the measurements by a linear inverse operator. However, the MNE...
متن کاملAdaptive Filtering Strategy to Remove Noise from ECG Signals Using Wavelet Transform and Deep Learning
Introduction: Electrocardiogram (ECG) is a method to measure the electrical activity of the heart which is performed by placing electrodes on the surface of the body. Physicians use observation tools to detect and diagnose heart diseases, the same is performed on ECG signals by cardiologists. In particular, heart diseases are recognized by examining the graphic representation of heart signals w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Human brain mapping
دوره 30 4 شماره
صفحات -
تاریخ انتشار 2009